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ABSTRACT

Aim The nestedness temperature of presence–absence matrices is currently

calculated with the nestedness temperature calculator (NTC). In the algorithm

implemented by the NTC: (1) the line of perfect order is not uniquely defined, (2)

rows and columns are reordered in such a way that the packed matrix is not the

one with the lowest temperature, and (3) the null model used to determine the

probabilities of finding random matrices with the same or lower temperature is

not adequate for most applications. We develop a new algorithm, BINMATNEST

(binary matrix nestedness temperature calculator), that overcomes these

difficulties.

Methods BINMATNEST implements a line of perfect order that is uniquely

defined, uses genetic algorithms to determine the reordering of rows and columns

that leads to minimum matrix temperature, and provides three alternative null

models to calculate the statistical significance of matrix temperature.

Results The NTC performs poorly when the input matrix has checkerboard

patterns. The more efficient packing of BINMATNEST translates into matrix

temperatures that are lower than those computed with the NTC. The null model

implemented in the NTC is associated with a large frequency of type I error, while

the other null models implemented in BINMATNEST (null models 2 and 3) are

conservative. Overall, null model 3 provides the best performance. The nestedness

temperature of a matrix is affected by its size and fill, but the probability that such

a temperature is obtained by chance is not. BINMATNEST reorders the input

matrix in such a way that, if fragment size/isolation plays a role in determining

community structure, there will be a significant rank correlation between the size/

isolation of the fragments and the way that they are ordered in the packed matrix.

Main conclusions The nestedness temperature of presence–absence matrices

should not be calculated with the NTC. The algorithm implemented by

BINMATNEST is more robust, allowing for across-study comparisons of the

extent to which the nestedness of communities departs from randomness. The

sequence in which BINMATNEST reorders habitat fragments provides

information about the causal role of immigration and extinction in shaping the

community under study.
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INTRODUCTION

One of the main goals of community ecology is the identi-

fication and explanation of non-random patterns of species

composition. One of the patterns that has been identified is the

nestedness of insular biotas: isolated communities often form

nested subsets, with species on species-poor islands constitu-

ting subsets of those present on richer islands. The nested

pattern was first proposed by Darlington (1957), and has

proved to be a very common one (Simberloff & Martin, 1991).

Several ecological processes can produce a nested pattern in

a community. Differential dispersal can lead to nestedness, if

accessible ‘islands’ are colonized by large numbers of ‘contin-

ental’ species and inaccessible islands are only colonized by

species with high dispersal capabilities (Darlington, 1957).

Alternatively, nestedness may be the result of differential

extinction, if species in the colonization pool are equally likely

to reach all fragments but some species can only persist in, say,

the larger fragments (Brown, 1971; Patterson, 1980). The two

processes are not mutually exclusive, and some nested patterns

are thought to be simultaneously affected by differential

colonization and extinction (Lomolino, 1996).

When studying the nestedness of the biotas present in a set of

islands,mountain tops or otherwise isolated fragments, there are

three basic problems: (1) how to calculate the nestedness of the

community, (2) how to determine the probability that chance

alone is responsible for the observed pattern, and (3) how to

interpret deviations from random expectations. Several indexes

can be used to calculate the nestedness of a community

(reviewed by Wright et al., 1998). A very popular one, devel-

oped by Atmar and Patterson (Atmar & Patterson, 1993) and

cited 147 times (ISI database search, August 2005), is the

‘nestedness temperature’, T. In fact, the use of T to study the

nestedness of systems such as plant–pollinator networks (Bas-

compte et al., 2003) and host–parasite interactions (Norton

et al., 2004; Zelmer et al., 2004), for which the index was not

originally developed, is becoming increasingly common.

Calculating the nestedness temperature of a community is

no trivial task, and most researchers analyse their data using

the ‘Nestedness Temperature Calculator Program’, or NTC

(Atmar & Patterson, 1995), freely available on the web (http://

www.aics-research.com/nestedness/tempcalc.html). Fischer &

Lindenmayer (2002) have pointed out that the NTC is often

used as a black box, and that this usage may lead researchers to

incorrect conclusions. Although Fischer & Lindenmayer (2002)

are concerned with the null model used to ascertain the

statistical significance of a matrix temperature, the problem

goes further than this: the definition provided by Atmar &

Patterson (1993) is consistent with many different algorithms,

and it does not specify a one-to-one relationship between a

matrix and its temperature. There being (to our knowledge) no

published account of the algorithm implemented by the NTC,

it is impossible to determine which of the many nestedness

temperatures compatible with the definition of Atmar and

Patterson (Atmar & Patterson, 1993) the software is

calculating.

The aims of this paper are: (1) to examine the definition of

nestedness temperature proposed by Atmar and Patterson

(Atmar & Patterson, 1993), highlighting its ambiguities, (2) to

describe the algorithm implemented by the NTC, pointing out

the aspects of this algorithm that are at odds with the original

definition of nestedness temperature, (3) to develop a new

algorithm that avoids these complications, and (4) to study

how the nestedness temperature can be used to infer the

ecological processes responsible for community assemblage.

Point 2 is based on the Visual Basic source code of the NTC,

kindly provided by W. Atmar. Point 4 develops suggestions

pioneered by Kadmon (1995) and Lomolino (1996) about how

to ascertain the extent to which differential immigration and

differential extinction affect community structure.

Although this paper provides sufficient information for the

implementation of the algorithm we propose, users can see the

BINMATNEST (binary matrix nestedness temperature calcu-

lator) program as currently implemented in Appendices S1

and S2 of the Supplementary Material. The program may also

be viewed on the internet (at http://www.eeza.csic.es), and the

C++ code is available from the corresponding author upon

request.

THE NESTEDNESS TEMPERATURE OF A MATRIX

Before going any further, it will be convenient to introduce

some notation. The list of species present in a series of islands,

fragments or habitat types can be summarized in a presence–

absence matrix, M. In this matrix, the element corresponding

to row i and column j is set to Mij ¼ 1 if species j is present in

fragment (or island) i, and to Mij ¼ 0 otherwise. We will say

that the matrix M has a ‘presence’ or a ‘one’ in position (i, j) if

Mij ¼ 1, and that it has an ‘absence’ or a ‘zero’ if Mij ¼ 0. The

‘fill’ of a matrix, /, is defined as the proportion of its cells that

denote the presence of a species at a site. Finally, there exists a

correspondence that associates every n · m matrix (n rows, m

columns) with the unit square in the (x, y)-plane, [0, 1] · [0,

1], in such a way that to the element Mij corresponds the point

((j ) 0.5)/m,(n ) i + 0.5)/n). Thus, M11 is associated with the

top-left corner of the square, and Mnm with its bottom-right

corner. (The transformation of a rectangle into a square

preserves the ratio between distances along a line and poses no

problem for calculating the temperature of the matrix.)

Calculating the temperature of a binary matrix involves

three steps (Atmar & Patterson, 1993). We first compute an

isocline of perfect order, which is a curve that, in a perfectly

nested matrix of the same size and fill, would separate cells

denoting the presence of a species at a site from cells denoting

its absence. We then reorganize the matrix, permuting rows

and columns in the way that maximizes its nestedness. In the

final step, we associate with each absence above the isocline

and with each presence below it a normalized measure of

distance to the isocline. The temperature of the matrix is the

sum of these distances, normalized in such a way that it ranges

between 0 for a perfectly nested matrix and 100 for a

maximally ‘unnested’ matrix. Traditionally, matrix

Calculating matrix nestedness
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temperature is given in ‘degrees’ (Atmar & Patterson, 1993).

However, matrix temperature is a percentage, and as such is an

non-dimensional quantity, and we will therefore avoid giving

any units to it.

The isocline of perfect order is ‘a line of smoothest

transition’ drawn from (0.5/m, 0.5/n) to ((m ) 0.5)/

m,(n ) 0.5)/n), and such that the area of the unit square

above the line exactly equals the fill of the matrix, / (Atmar &

Patterson, 1993). This definition is, however, ambiguous. To

start with, given two continuous functions, f and g, and given

that the derivatives f n and g n exist for all n, we know of no way

to decide which function is ‘smoother’. We take ‘a line of

smoothest transition’ to imply a strictly monotonic function

[i.e. a function f such that f(x) > f(x¢) if and only if x > x¢],
with no inflection point [i.e. always concave or always convex

in the interval (0, 1): this seems to be implied by the assertion

that the isocline of perfect order will be concave or convex

depending on whether the fill of the matrix is smaller or

greater than 0.5 (Atmar & Patterson, 1993)], and with no

singularities in (0, 1). Even with these restrictive specifications,

the isocline of perfect order is not uniquely defined: infinitely

many functions, for instance a polynomial or an exponential

function, could be found satisfying all the requirements. The

ambiguity in the definition of the isocline of perfect order is

intrinsic, and essentially it derives from the fact that two

perfectly nested matrices of the same dimension and fill need

not be equal.

Let us assume, for the time being, that we can actually

calculate the isocline of perfect order. Then, a matrix element

Mij is ‘unexpected’ if it denotes a presence below the isocline

or an absence above it. The unexpectedness uij of such an

element depends on how far from the isocline it lies. To be

precise,

uij ¼
dij

Dij

� �2

; ð1Þ

where dij is the distance from the point A representing the cell

in question, A ¼ ((j ) 0.5)/m, (n ) i + 0.5)/n), to the isocline

along a line with slope )1 (distance between points A and B in

Fig. 1), and Dij is the length of the segment with slope )1,
running through point A, contained within the unit square

(distance between E and F in Fig. 1). The total unexpectedness

of the matrix is

U ¼ 1

n � m

X
uij; ð2Þ

where the sum is conducted over all unexpected cells, and the

temperature of the matrix is

T ¼ kU; ð3Þ

where k ¼ 100/Umax and Umax is the maximum value that U

can achieve for any conceivable matrix, Umax � 0.04145

(Atmar & Patterson, 1993).

Clearly, the value of T thus computed will change if we

permute the columns or rows of a matrix, although the

information contained in the matrix is not affected by such

permutations. The temperature of the matrix is therefore

defined as the minimum value of T that can be obtained by

permuting rows and columns (Atmar & Patterson, 1993).

Once the temperature of a matrix is known, it may be useful

to know whether a matrix with this temperature is likely to be

obtained by chance. There is no analytical method to do this,

and we must resort to Monte Carlo simulations.

The following three sections look in more detail at the

isocline of perfect order, how the presence–absence matrix is

packed, and how deviations from expected values are calcu-

lated. Each section compares the algorithms implemented by

the NTC and BINMATNEST. The discussion of the algorithms

implemented by the NTC is based on the analysis of the

program source code.

THE ISOCLINE OF PERFECT ORDER

The NTC implements the isocline of perfect order in

parametric form, (x(t), y(t)), where both x(t) and y(t) are

cubic polynomials of the parameter t. Strictly speaking, the

resulting isocline need not be monotonic, it can have inflection

points, and it is not symmetric to reflections over the

x + y ¼ 1 diagonal. In practice, however, the isocline is almost

always well behaved.

The NTC defines the isocline of perfect order as a function

of a parameter p, (x(t, p), y(t, p)), and adjusts the value of p in

such a way that the number of cells denoting absences above

the line exactly equals the number of cells denoting presences

below it. [A matrix element, Mij, is said to be above the isocline

of perfect order if the point ((j ) 0.5)/m,(n ) i + 0.5)/n) is

above the isocline.] Notice that this is not exactly the same

A

B

E

F

dij

Dij

Figure 1 Representation of the elements involved in the

computation of unexpectedness, uij ¼ (dij/Dij)
2. The isocline of

perfect order divides the unit square into two regions. The dis-

tance from a matrix element to the isocline, dij, is the distance

between point A representing the matrix element and point B,

itself the intersection between the isocline and a straight line with

slope –1 running through A. Dij is the length of the segment with

slope –1, running through A, contained within the unit square

(distance between E and F).
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thing as adjusting the parameter p until the area above the

curve equals the fill of the matrix, /. In particular, the number

of presences below the curve and the number of absences

above it are integer variables, and hence discrete. This implies

that, in general, there is not a single value of p, but a

continuous range of values (p1, p2), such that (x(t, p), y(t, p))

divides the unit square into two regions with as many absences

in the upper region as presences in the bottom one whenever

p1 < p < p2.

As explained in the previous section, there is no a priori way

to determine the ‘best’ isocline of perfect order, and it would

be perfectly possible to use the same functional form as chosen

for the NTC, adjusting the value of p in such a way that the

area above the isocline equals the fill of the matrix. However, a

parametric function like the one used by the NTC significantly

complicates the numerical algorithms and slows down calcu-

lations. For this reason, BINMATNEST defines the isocline of

perfect order as

f x; pð Þ ¼ 0:5

n
þ n � 1

n
� 1� 1� m � x � 0:5

m � 1

� �p� �1=p

: ð4Þ

This function is monotonically increasing in x and has no

singularities in the interval 0 < x < 1. Whatever the fill of our

presence–absence matrix, there is p 2 (0,¥) such that the

area above the curve equals /. As Fig. 2 shows, once the

parameters are properly adjusted there is virtually no differ-

ence in the isoclines of perfect order used by BINMATNEST

and by the NTC.

PACKING THE PRESENCE–ABSENCE MATRIX

For any but the smallest matrices, finding the permutation of

rows and columns that leads to minimum temperature is a

very difficult task. Essentially, the problem is that the number

of possible arrangements (n! m! in the absence of duplicated

rows and columns) is so large that one cannot compute the

temperature for every possible configuration and select the

configuration leading to the minimum temperature. One can

try to solve the problem using some sort of directional

minimization scheme, but the abundance of local minima

makes it very difficult to attain the global minimum.

The NTC does not really attempt to solve this problem.

Instead, it follows a simple heuristic to order rows and column

in such a way as to approach the optimal packing. To

understand how this is done, consider first the ordering of the

columns. For each column j, we can define scores s(j) and t(j)

as follows:

s jð Þ ¼
P

ijMij¼1

i2

t jð Þ ¼
P

ijMij¼0

n � i þ 1ð Þ2

9>=
>; ð5Þ

We now find two permutations of the integers 1, 2,…, m, {l1, l2
,…, lm} and {k1, k2 ,…, km}, such that t (li) £ t (li+1) and

s(ki) ‡ s(ki+1). In other words, the l sequence arranges columns

in ascending order of their t score (packing by absences), and

the k sequence arranges columns in descending order of their s

score (packing by presences). Although there need not be a

perfect correlation between ordering by t (or s) score and

minimizing temperature, for the value of T depends subtly on

the exact placement of the isocline of perfect order, both orders

make some sense a priori. The NTC takes into account both

scores, arranging columns in a sequence that is a compromise

between the l and k sequences. First it arranges the matrix by

columns, then by rows, and the entire process is iterated eight

times. (The order is reversed if there are more rows than

columns.)

After rearranging the matrix, the NTC removes empty

rows and columns and duplicated all-presence rows and

columns. That is, if there are i rows (or columns) without

empty cells, i ) 1 of them are removed. Considering its

simplicity, the algorithm works very well. It can, however,

easily become trapped into cycles that produce suboptimal

packing. For instance, if we use a 10 · 10 diagonal matrix as

input for the NTC, we obtain very different results

depending on how we order rows and columns in the input

matrix: with the standard diagonal matrix (Mij ¼ dij), the

output of the NTC is T ¼ 52.64, while if we permute rows

(or columns) in such a way that the presences are arranged

from the bottom-left to the upper-right corners, the output

is T ¼ 29.92. (Both matrices contain the same information,

and it is a trivial task to go from one to the other by

permuting rows or columns.) This is because the packing

algorithm actually leaves the input matrices untouched.

Although for most input matrices the packing algorithm

Figure 2 The isocline of perfect order as calculated with the

nestedness temperature calculator (symbols) and BINMATNEST

(lines) for various matrix fillings: / ¼ 0.05 (triangles), 0.15 (open

circles) and 0.25 (closed circles). The x and y coordinates corres-

pond to the j and i indexes of the matrix elements (respectively)

after the matrix is transformed into the unit square. For most

parameter values, there is essentially no difference between the two

methods for calculating the isocline. The function defined by

equation 4 simplifies calculations, but leads to virtually identical

results to the function used by the nestedness temperature

calculator.
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performs reasonably well, the same problem appears in most

large matrices at a local scale (i.e. affecting a small number

of rows and columns). In particular, if the species present at

two sites are the same, except for two species, one of which

is present at one site while the other is present at the other

site, the packing algorithm will give different results

depending on which site is associated with which matrix

row. That is, the packing algorithm of the NTC has

difficulties dealing with ‘checkerboard’ patterns.

In order to improve the algorithm implemented by the

NTC, we first note that the question of how to organize rows

and columns to minimize the temperature of a matrix is not

unlike the travelling salesman problem (TSP). Given a set of

geographic locations, the TSP consists in searching for the

shortest possible path traversing every location (Christofides,

1976; Lawler et al., 1985). After decades of intense research

(for a recent review, see Gutin & Punnen, 2002), the TSP still

lacks a definite solution. It would therefore be ludicrous to

search for the ultimate solution of the matrix-packing

problem. We can, nevertheless, search for inspiration in the

abundant TSP literature. Researchers working on the TSP have

used two main approaches: linear programming (as in

Gamarnik et al., 2004) and genetic algorithms (GA, as in Soak

& Ahn, 2004). Adapting the complex linear-programming

solutions of the TSP to packing the matrix is well beyond our

capabilities, but the simplicity of GA makes them more

malleable. We have therefore opted to use a GA to pack the

matrix.

A GA operates by producing an initial set of PopSize possible

solutions that are improved by the production of new variants

with selection of the best-performing ones. In BINMATNEST,

selection takes place as follows. In every generation, TourSize

individuals are selected at random from the entire population

and the worst two individuals (the ones with the highest

temperature) are replaced by ‘offspring’ of the two best-

performing individuals of the group. This process is iterated

for nbGen generations, and the best-performing solution is

used to calculate the temperature of the input matrix. Note

that the algorithm calculates the actual temperature of each

proposed solution, instead of trying to minimize some other

metric that is assumed to be correlated with the temperature.

We now explain how matrix temperature is calculated, how

offspring are produced, and how the initial population is

created.

Before entering the GA, BINMATNEST orders columns (left

to right) and rows (top to bottom) in descending order

according to the number of presence-denoting cells they have,

and it removes empty and duplicated all-presence rows and

columns. It then calculates the fill of the matrix (/ ¼ number

of presence-denoting cells divided by the product n · m) and

the value of p (equation 4) corresponding to such fill. This

determines the isocline of perfect order, from which we

calculate the unexpectedness matrix, U, that has for elements

the uij of equation 1. This matrix is calculated only once. Now,

given a proposed solution (that is, a reordering or rows and

columns), the computation of its temperature is very fast,

because it simply involves adding up the elements of the U

matrix corresponding to ‘unexpected’ cells (presence-denoting

cells below the isocline, absence-denoting cells above it) of

the proposed solution, and a final multiplication (equations 2

and 3).

A proposed solution is coded by two ‘chromosomes’: one

for the rows and one for the columns. The row chromosome

contains a permutation {r1 ,…, rn} of the numbers 1 ,…, n,

and the column chromosome a permutation {c1 ,…, cm} of the

numbers 1 ,…, m. Consider the row chromosome: ri indicates

the position that the ith row of the original matrix should take

in the proposed solution. When we want to produce an

offspring from a well-performing solution, we first select a

second parent at random from the entire population. Let

{w1 ,…, wn} and {p1 ,…, pn} be the row chromosomes of the

well-performing solution and its partner, respectively. The row

chromosome of the offspring, {o1 ,…, on}, equals {w1 ,…, wn}

with probability 0.5, and it is otherwise produced by combi-

ning the information from both parents, using the following

algorithm.

1. Select an integer k, 1 £ k < n, at random (uniform

distribution).

2. Let oi ¼ wi for i ¼ 1 ,…, k.

3. For i ¼ k + 1 ,…, n, oi ¼ pi if pi =2 {w1 ,…, wk}.

4. For those i for which i > k and pi 2 {w1 ,…, wk}, the value

of oi is chosen at random from all positions not yet used.

The same procedure applies to the column chromosome.

The choice of combining information from both parents or

not is made independently for each chromosome, subject to

the condition that at least one chromosome must combine

information from both proposed solutions. For all the results

shown in this paper, random numbers with uniform distribu-

tions were generated with the ‘ran1’ function of Press et al.

(1992), initialized with the computer clock.

As a final step, each offspring chromosome suffers a

‘mutation’ with probability 0.1. For row chromosomes,

mutations consist in choosing random integers k1 and k2 in

[1, n] and producing a cyclic permutation of the elements

rk1 ,…, rk2.

The starting population is created as follows: the original

matrix (after removing empty and duplicated all-presence rows

and columns) constitutes the first proposed solution. The

second proposed solution is the one obtained with the packing

algorithm of the NTC. Solutions 3 to 13 are produced with an

algorithm not unlike the one used by the NTC packing

routine. Assuming that there are more columns than rows, we

first sort columns, then rows, and iterate the process four times

(the order is reversed if there are more rows than columns). To

sort columns, we calculate a score for each column,

z(j) ¼ x ) s(j) + (1 ) x)t (j), where s(j) and t(j) are given by

equation 5 and x takes values 0, 0.1 ,… and 1 for proposed

solutions 3, 4, … and 13, respectively. Columns are ordered in

descending order of their z scores. (An analogous procedure is

used for sorting rows.) All remaining proposed solutions of the

starting population are obtained as random ‘mutations’ of

these 13.
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CHOICE OF NULL MODEL

More often than not, we want to know the probability that the

nestedness of a ‘random’ matrix is higher than (or equal to)

the nestedness of our data; that is, the probability that the

temperature of a random matrix is lower than or equal to the

temperature of our system. Unfortunately, there is no a priori

way to specify what a random matrix is, and researchers will

have to be very careful when evaluating the statistical

significance of their results. The NTC creates a number of

‘random’ matrices by letting each individual element be equal

to 1 with probability / (the fill of the input matrix). It

calculates the temperature of each random matrix and returns

the proportion of matrices with temperature lower than or

equal to the temperature of the input matrix. This will not

always be an appropriate null model (Fischer & Lindenmayer,

2002).

To solve this difficulty, BINMATNEST returns three

‘p-values’, associated with different null models. The first one

is calculated using the same null model as implemented in the

NTC (null model 1). Null model 2 is the one proposed by

Fischer & Lindenmayer (2002). For each column, it calculates

the fraction of presence-denoting cells,

qj ¼
1

n

Xn

i¼1

Mij; ð6Þ

and the random matrices, A, are created by letting Aij ¼ 1

with probability qj (regardless of the value of i). Some authors

have argued that the null model should control for the

number of ones in each row and column (Connor &

Simberloff, 1979; Sanderson et al., 1998; Brualdi & Sanderson,

1999). Although these authors certainly have a point, there is

as yet no known efficient algorithm that can produce random

elements of the corresponding null space in such a way that

every element of the null space has the same probability of

being generated. Several published algorithms will generate

random matrices satisfying the row and column constraints

(Sanderson et al., 1998; Gotelli & Entsminger, 2001), and

some of these algorithms are actually very efficient (Miklós &

Podani, 2004), but they do not sample the null space

uniformly (Miklós & Podani, 2004). Likewise, Miklós &

Podani (2004) develop an algorithm that produces a

distribution of random matrices that is asymptotically uni-

form, but in practice the algorithm is too slow for all but the

smallest matrices. It has been suggested that combining a fast,

biased algorithm with a few steps of the asymptotically

uniform algorithm might do the trick (Miklós & Podani,

2004), but it does not (M.A. Rodrı́guez-Gironés, unpubl.

results). For this reason, null model 3 of BINMATNEST does

not attempt to control exactly for the row and column totals.

Instead, it follows a strategy introduced by Bascompte et al.

(2003) to calculate the p-value. The fraction of presence-

denoting cells is computed for rows, qri, and columns, qcj, and

for every random matrix A the element Aij is set equal to 1

with probability (qri + qcj)/2 (Bascompte et al., 2003). BIN-

MATNEST allows users to decide how many random matrices

are generated to calculate p-values. The user is also free to select

the values of PopSize, TourSize and nbGen that are most suitable

for the problem under consideration. All the results shown here

correspond to PopSize ¼ 35, TourSize ¼ 7 and nbGen ¼ 2000.

Increasing these values will improve the accuracy of the results,

but at the price of increasing computing time.

It seems to us that there is no a priori way to determine

which (if any) of the null models implemented by

BINMATNEST is the ‘correct’ one, because the right null

model to use will depend on the constraints to which the

presence–absence matrices are subject. These constraints

need not be universal, and it would make little difference if

they were, because we ignore them. We can, however,

answer a more modest question. Namely, given the

temperature of a presence–absence matrix, if the matrix

was actually subject to certain constraints, and we calculated

the probability that a random matrix had a lower tempera-

ture using a sample space subject to a different set of

constraints, what errors would we introduce?

To answer this question, we generate a ‘template’ matrix

as follows. We select integers n and m at random

(independent uniform distributions in the range 10–30)

and a real number P (uniform distribution, range 0.2–0.8)

and let Tij ¼ 1 with probability P, for i ¼ 1, …, n and

j ¼ 1, …, m. From this template matrix, we generate three

‘data’ matrices using the algorithms explained above in the

description of null models 1–3. We finally compute, for each

data matrix, the p-value associated with each null model.

The process was iterated 500 times. Because the original data

matrices were themselves random, the p-values should be

uniformly distributed between 0 and 1, and a cumulative

plot of the p-values obtained should follow a straight line

with slope 1. As Fig. 3 shows, this was never the case. All

null models provide conservative tests (cumulative plot

below diagonal for small p-values) when the data matrix was

generated with the same constraints as assumed in the

calculation of the p-value. Using null model 1 leads to a

high incidence of type I errors (cumulative plot above

diagonal for small p-values) when the data matrix is subject

to a different set of constraints, while using null models 2

and 3 always leads to conservative tests and a high incidence

of type II errors (with the exception of null model 3, which

performs just right when data matrices are generated with

null model 2 – the ‘type I errors’ that it introduces for large

p-values are not a practical concern). Overall, null model 3

seems to perform better (smaller type I error) than the

others, and the use of null models 1 and 2 would only seem

to be justified if there is evidence supporting the claim that

the data under consideration are subject to those specific

constraints.

At first sight, it might seem odd that the diagonal plots in

Fig. 3 deviate from the straight line, since in these plots the

data matrices were generated with the same algorithm as used

to calculate the p-values. The point is that the parameters of

the algorithm were different. Consider, for example, the upper-

left plot (null model 1). We first create a template matrix. If the
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fill of the template matrix is /, the elements of the ‘data’

matrix will be set equal to 1 with probability /. As a result, the
expected fill of the data matrix is itself /, but in most

particular trials, as a result of sampling error, the actual fill will

be /¢ „ /. It is /¢ that will be used to generate the matrices

from which the p-value is calculated – hence the discrepancy.

COMPARISON OF THE TWO ALGORITHMS

Figure 4 shows the relationship between the temperatures

calculated with the two algorithms for a set of 90 computer-

generated matrices. The value obtained with BINMATNEST

was always lower than the value obtained with the NTC, the

difference being occasionally quite large. When the NTC

managed to pack the input matrix efficiently, there was hardly

any difference between the two algorithms, but when the

packing algorithm of the NTC becomes trapped in a cycle it

can lead to a serious overestimation of the matrix temperature.

Although the packing algorithm implemented in BINMAT-

NEST does not necessarily find the optimal packing either, it is

more robust and less likely to become trapped in local minima

than the algorithm used by the NTC. As a particular example,

BINMATNEST finds the same temperature (T ¼ 30.28) for

the 10 · 10 diagonal matrix, regardless of how the ones of the

input matrix are arranged. Overall, there was a good corre-

lation between the temperatures found by both algorithms

(R2 ¼ 0.98), but the slope of the regression was slightly greater

than one (1.05; 95% confidence limits: 1.02–1.08) and the

intercept was greater than zero (2.39; 95% confidence limits:

1.36–3.43).

Repeating the exercise with real data gives intriguing results

(Fig. 5). We analysed two data sets. The first one consists of 37

of the absence–presence matrices that come with the NTC

package (the first 37 with less than 250 species, in alphabetical

order). The second one consists of 37 mutualistic pollination

networks, mostly those reported by Bascompte et al. (2003)

and Olesen & Jordano (2002), but including five matrices

published elsewhere (Kato, 2000 Yamazaki & Kato, 2003;

Dupont et al., 2003; Stald et al., 2003) and three unpublished

matrices kindly provided by J. M. Olesen.

The relationship between the temperature values obtained

with the TNC and BINMATNEST differ significantly for the

two data sets (F(1,70) ¼ 10.75, p < 0.0016 for a test of

the homogeneity of slopes based on a GLIM analysis). While

the data for the presence–absence matrices fall along the

regression line obtained from the computer-generated

matrices (TNTC ¼ 1.82 + 1.22TB, where TNTC and TB are the

Figure 3 Cumulative frequency of the

p-values associated with the nestedness tem-

perature of random matrices. The label i/j in

each plot indicates the null model used to

generate data matrices (i) and to calculate

their p-values (j). Straight lines have slope 1.

Curves above the straight line represent a

high tendency for the test to produce type I

errors, while curves below the straight line

represent conservative tests (high incidence

of type II errors).

Figure 4 Relationship between the temperature values obtained

with BINMATNEST (abscissa) and the nestedness temperature

calculator (ordinates) for 90 computer-generated matrices. The

straight line represents the line of equality, and points represent

individual matrices. All points lie above the diagonal.
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temperature values obtained with the TNC and BINMAT-

NEST, respectively; n ¼ 37, R2 ¼ 0.87), the data for the

pollination networks do not: the NTC performs poorly on

these data, grossly overestimating matrix temperature

(TNTC ¼ 1.32 + 1.65TB; n ¼ 37, R2 ¼ 0.88). In both cases,

the slope of the relationship differed significantly from 1 (95%

confident intervals were 1.44–1.86 for pollination networks

and 1.07–1.38 for presence–absence data). It could be argued

that the nestedness temperature was not intended for use with

pollination networks, but this is not the point: what is

important here is that the error introduced by the packing

algorithm of the NTC depends on the structure of the data.

Incidentally, the analysis also shows that there are differences

in the way that pollination networks and island biotas are

assembled, but this result, in itself, is hardly surprising, and the

nature of these differences remains at present elusive.

INTERPRETING NESTEDNESS

Whichever way we have calculated the nestedness temperature

of our presence–absence matrix and whatever the extent that it

deviates from randomness, we may well wonder what it all

means. In this section, we deal with two issues related to the

interpretation of nestedness temperature: across-study com-

parisons and causality.

External validity

If the nestedness temperature of butterflies in archipelago A is

TA ¼ 23, and in archipelago B it is TB ¼ 37, can we conclude

that the subsets of butterflies in A islands are more nested than

those in B? The nestedness temperature is normalized in such a

way that it will always be a non-negative number smaller than

or equal to 100. This, however, does not imply that there is no

relationship between a matrix structure (specifically, its size

and fill) and its temperature.

To study the relationship between matrix structure and

temperature, we first generated 15,000 square matrices by

choosing at random their dimension (uniform distribution,

range 10–500) and a real number P (uniform distribution, range

0.05–0.95). Each element of the matrix was then set equal to 1

with probability P, and the nestedness temperature of each

matrix was calculated. As Fig. 6 shows, the distribution of

matrix temperatures changed with the size and fill of the

matrices. For every matrix size or fill, the nestedness temper-

atures of the matrices attain a broad range of values, with most

temperatures concentrated around the upper limit of this range.

Both the upper and lower limits of this range show definite

patterns, so that temperature increases with matrix size and

attains its maximum value for intermediate fills (Fig. 6). The

temperature values obtained with these random matrices do

not, however, span the entire range of possible temperatures. It

is possible to search specifically for matrices with very high (or

low) temperatures. Figure 6 also shows the relationship between

T

T

Figure 5 Relationship between the temperature values obtained

with BINMATNEST (abscissa) and the nestedness temperature

calculator (ordinates) for: presence–absence matrices representing

island biotas (empty squares); and interaction matrices repre-

senting pollination networks (black triangles). The straight line

represents the regression line for the computer-generated matrices

of Fig. 4.
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Figure 6 Dependence of temperature on (a) matrix size

and (b) fill for random square matrices. Each point represents

one matrix. In the top panel, circles linked with lines

represent the maximum and minimum temperatures that

can be obtained for each matrix size.
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matrix size and the highest and lowest temperature values that

can be reached. Whatever the size of the matrix, it is possible to

produce nested matrices with temperature very close to zero.

The maximum temperature that can be reached, however, is an

increasing function of matrix size. Although the value shown in

Fig. 6 may underestimate maximum temperature for large

matrices, the value obtained for small matrices was obtained

with an exhaustive search of all possible matrices and can

therefore be taken at face value.

What does not depend on the fill and size of a matrix is the

probability that its degree of nestedness is obtained by chance.

We generated 10 random square matrices for each combina-

tion of size (25, 75, 125,… and 475 rows and columns) and fill

(0.1, 0.3, …, 0.9), and calculated their temperature and their

associated p-value (null model 3). The p-values (or rather, the

arcsines of their square roots – the transformation improved

the normality of residuals and homogeneity of variances) did

not change significantly either with the size of the matrix

(F ¼ 0.882, 9 d.f., p ¼ 0.54), its fill (F ¼ 1.939, 4 d.f.,

p ¼ 0.10), or their interaction (F ¼ 1.182, 36 d.f., p ¼ 0.22).

It follows from the above that a direct comparison of the

temperatures of two systems is meaningless unless the matrices

representing them have the same size and fill, whereas a

comparison of their p-values is legitimate.

Differential immigration or extinction?

Some authors have attempted to use the concept of nestedness

to ascertain whether selective immigration, selective extinction,

or both, are responsible for the structure of particular

communities (Kadmon, 1995; Lomolino, 1996). Thus,

Lomolino (1996) produced, for each ‘archipelago’ under

consideration, two presence–absence matrices. In one of them

islands were ordered according to their size, and in the other

by their isolation from the mainland. He then computed the

nestedness of each matrix (using an index that does not involve

re-sorting rows and columns) and essentially derived a

multivariate test that allowed him to study the effects of each

variable (size and isolation) on nestedness, after partialling out

the effects of the other. If immigration and extinction are

correlated with isolation and size of the islands, the test gives

information about the extent to which selective immigration

and extinction are responsible for community structure [see

Lomolino (1996) for details, discussion and caveats].

Computing the nestedness temperature of a binary matrix

involves re-ordering rows and columns, and therefore

Lomolino’s (1996) approach cannot be used. Nevertheless,

the order in which islands are sorted by the algorithm may

contain equivalent information. To ascertain this possibility,

we used the following approach.

Generating hypothetical communities structured by

immigration or extinction

Consider first a community structured through immigration.

Island j was assigned an isolation factor Dj at random (uniform

distribution, range 0–1), and species i a dispersal incidence Ii

(uniform distribution, range 0–1). The probability that species

i colonized island j was then set equal to exp (x)/

[exp (x) + exp ()x)], with x ¼ b(Ii ) Dj ) x0), where

b > 0. For low values of b, colonization is essentially random.

For high values, species i can only colonize island j if

Ii > Dj + x0. For every value of b that we used, the value of

x0 was chosen in such a way that the expected fill of the

presence–absence matrix was equal to 0.2.

A community generated solely through extinction would be

generated in essentially the same way, except that the factor

associated with island j would indicate its size, and the factor

associated with species i would indicate its incidence (its ability

to survive in small islands). A community structured through

immigration and extinction can be generated by calculating,

for each island–species pair, a probability of initial coloniza-

tion and a probability of long-term establishment. Each

probability would be calculated as stated above, except that

the value of b need not be the same for immigration, bim, and
extinction, bext. Thus, a high value of bim and a low value of

bext would imply that immigration has played a more

important role than extinction in structuring the community.

Evaluating the importance of immigration and extinction

from presence–absence matrices

Once we have generated the presence–absence matrix of a

hypothetical community, we use BINMATNEST to find the

permutation of rows and columns leading to maximal

nestedness and use Spearman’s rank correlation to test whether

Temperature
Rank correlation

Figure 7 Effect of b on the nestedness temperature and the rank

correlation between column order in the packed matrix and island

isolation. For each value of b, we generated 100 communities as

described in the text. Each community is characterized by the

probability that a random matrix (null model 3) has the same or

lower temperature (black circles) and by the probability that the

correlation between a random permutation of the islands is at least

as correlated to their isolation as the sequence in which BIN-

MATNEST orders them for calculating the nestedness temperature

of the matrix (empty circles). Symbols represent mean values, and

bars represent standard the error of the mean.
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islands have been sorted by size or isolation. Figure 7 shows

the basic results when the community is structured by a single

factor (say, immigration). For each value of b, 100 commu-

nities were simulated, each community having a number of

islands and species randomly chosen between 20 and 80

(independent uniform distributions). As expected, the p-value

associated with the nestedness temperature of the matrix and

the p-value of the rank correlation between island order and

isolation decrease when b increases. What is more striking is

that the test based on the rank correlation is more sensitive

than the test on matrix temperature. For instance, when

b ¼ 0.5, the average p-value for the matrix temperature is

0.241 (SE 0.049), while the average p-value for the rank

correlation is 0.012 (SE 0.005). Notice also that, when b ¼ 0

(immigration plays absolutely no role in community struc-

ture), the p-values of the rank correlation have a uniform

distribution in the interval (0, 1), while the p-values associated

with matrix temperature are, on average, greater than 0.5 (i.e.

temperature is, in some sense, greater than expected by

chance).

The increased sensitivity of the rank correlation test relative

to the nestedness temperature test is also apparent when

communities are structured through immigration and extinc-

tion. Figure 8 shows the cumulative distribution of p-values

for 100 independent runs with bim ¼ bex ¼ 0.1. The nested-

ness temperature of the matrix never deviates from random

expectations (at the 0.05 level, null model 3), while 34% of

communities had a significant (p < 0.05) correlation between

island isolation or size and position in the packed matrix.

We finally let bim and bex take the values 0.1, 0.3, 0.75,

1.5 and 2.5 (all 25 possible combinations) and produced 75

independently chosen hypothetical communities for each set.

A general linear model analysis, with bim and bex as factors

and number of rows and columns as covariates, shows that

all factors have a significant effect on the p-value of the rank

correlation (after applying the arcsine of the square-root

transformation) between island isolation and position in the

packed matrix (Table 1). Although, as a result of the large

sample size, the effect of community size is very significant,

this effect is numerically rather small. The p-value of the

rank correlation decreases with the number of species and

islands (i.e. with sample size) with coefficients )0.001 and

)0.002, respectively. The p-value of the rank correlation

between island isolation and position in the packed matrix is

P-value
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Figure 8 Cumulative distribution of the p-values associated with

the nestedness temperature (dotted concave line) and rank cor-

relation between island isolation/size and position in the packed

matrix (dashed convex lines) for 100 hypothetical communities in

which immigration and extinction play a relatively small role

(bim ¼ bex ¼ 0.1). Of the two dashed convex lines, one corres-

ponds to island isolation and the other to island size. Because of

the symmetry of the model (bim ¼ bex in this particular case) they

provide the same information. The solid line is the line of equality,

corresponding to the cumulative distribution of a random deviate

with uniform distribution.

Table 1 Effects of community size (number of species and is-

lands) and organization rules (value of bim and bex) on the p-value

of the rank correlation between island isolation and position in the

packed matrix

SS d.f.

Mean

square F p

Intercept 17.1448 1 17.1448 312.8004 < 0.0001

Number of species 0.5732 1 0.5732 10.4578 0.0012

Number of islands 2.6126 1 2.6126 47.6659 < 0.0001

bim 132.6136 4 33.1534 604.8705 < 0.0001

bex 9.1471 4 2.2868 41.7213 < 0.0001

bim · bex 8.1278 16 0.5080 9.2681 < 0.0001

Error 101.2901 1848 0.0548

Figure 9 Effect of bim and bex on the rank correlation between

column order in the packed matrix and island isolation. For each

combination of bim and bex, we generated 75 communities as

described in the text. Each community is characterized by the

probability that the correlation between a random permutation of

the islands is at least as correlated to their isolation as the sequence

in which BINMATNEST orders them for calculating the nested-

ness temperature of the matrix. Symbols represent mean values,

and bars represent the standard error of the mean. Each set of

symbols is associated with a value of bex.
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a decreasing function of bim and an increasing function of

bex (Fig. 9). The correlation thus improves if immigration

plays an important role in structuring the community, and

deteriorates if the role of extinction becomes stronger.

Owing to the symmetry that immigration and extinction

play in the model, analogous results are obtained when we

analyse the variation of the p-value of the correlation

between island size and position in the packed matrix.

CONCLUDING REMARKS

In order to calculate the temperature of a binary matrix, one

needs to make essentially two choices: one relates to the

definition of the isocline of perfect order, and the other to

the way the matrix is reorganized before the computations.

The choice of the family to which the isocline belongs seems

not to be critical, provided that certain basic assumptions are

satisfied, but one must make sure that the choice of an isocline

from within this family is done in an unambiguous manner.

The packing algorithm, on the other hand, can have a strong

effect on the results of the computations. Care must be taken

that the packing algorithm does not easily get trapped in

dynamic cycles or local minima.

The presence of a systematic bias in the results provided by

the NTC would pose no special problem, because the

difference between the temperatures of two or more matrices

would remain meaningful. A completely random error would

be undesirable because it would reduce the statistical power of

tests, but it would be unlikely to lead researchers to wrong

conclusions. What is more worrying is that the noise term

introduced by the NTC algorithm depends on the structure of

the data. This makes it difficult to compare in any meaningful

way results from different studies when the NTC is used to

compute the nestedness temperature of a presence–absence

matrix. The packing algorithm of BINMATNEST is more

robust and therefore less likely to introduce errors that depend

on the structure of the data.

Although, by definition, the nestedness temperature of a

matrix is a number between 0 and 100 whatever the size and

structure of the matrix, the range of values that the matrix

temperature can actually take depends on its size and fill. The

range of possible temperatures is substantially constrained for

small matrices and for matrices with very low or very high fills.

It follows that the temperature nestedness of a matrix provides,

by itself, relatively little information. On the other hand, the

probability that such temperature is obtained by chance can be

estimated with a number of null models, and one of them (null

model 3) provides reliable information.

When we can estimate the size and isolation of our islands,

the sequence in which BINMATNEST reorders islands in the

packed matrix can be used to study the relative importance of

island size and isolation on structuring the community, and, if

size and isolation are directly linked to species immigration

and extinction, we can study whether immigration, extinction,

or both, are causally responsible for the nested structure of the

community.
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Carcı́a-Prieto, L. (2004) Nestedness in colonization-domi-

nated systems: helminth infracommunities of Rana vaillanti

Brocchi (Anura: Ranidae) in Los Tuxtlas, Veracruz, Mexico.

Journal of Parasitology, 90, 705–710.

SUPPLEMENTARY MATERIAL

The following supplementary material is available for this

article online from http://www.Blackwell-Synergy.com

Appendix S1 BINMATNEST user’s guide.

Appendix S2 BINMATNEST application.

BIOSKETCHES

Miguel A. Rodrı́guez-Gironés has used evolutionary game

theory to study parent–offspring conflict and the evolution of

signalling systems. He is currently working on sexual canni-

balism and plant–pollinator networks.

Luis Santamarı́a is interested in evolutionary ecology and

plant–animal interactions (herbivory, seed dispersal and

pollination), as well as in the interaction between research,

policy and management.

Editor: Jose Alexandre Diniz-Filho

Calculating matrix nestedness

Journal of Biogeography 33, 924–935 935
ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publishing Ltd


